MINIREVIEW ARTICLE

Membrane phosphoinositides and protein-membrane interactions

Nikhil A. Gokhale

Received: 7 May 2013/Accepted: 9 May 2013/Published online: 4 July 2013 © Springer-Verlag Wien 2013

Abstract Proteins with polybasic clusters bind to negatively charged phosphoinositides at the cell membrane. In this review, I have briefly discussed the types of phosphoinositides naturally found on membrane surfaces and how they recruit protein complexes for carrying out the process of signal transduction. A large number of researchers from around the world are now focusing their attention on protein—membrane binding, as these interactions have started to offer us a much better insight into the process of cell signaling. The main areas discussed in this brief review article include the phosphoinositide binding specificities of proteins and the role of their lipid binding in signaling processes downstream of membrane recruitment.

 $\begin{tabular}{ll} \textbf{Keywords} & Proteins \cdot Phosphoinositides \cdot Lipids \cdot \\ Protein-membrane interactions \cdot Biochemistry \cdot Signal \\ transduction \end{tabular}$

Introduction

Phospholipids play an important role in regulating the process of signal transduction at the membrane surface (Cho 2006). Protein–membrane interactions are involved in a large number of physiologically significant processes such as endocytosis, exocytosis, intracellular transport and diseases ranging from inflammation to cancer (Cho and Stahelin 2005). Lipid-binding proteins get localized to

various components of the membrane machinery (depending on their lipid selectivity) and exhibit a variety of functions that are direct consequences of their membrane-selective recruitment (Varnai and Balla 2008). Some proteins are constitutively localized to intracellular membrane sites while others translocate to membrane surfaces in response to certain agonists (Saltiel and Kahn 2001). Depending on their membrane binding specificities, the peripherally binding proteins described above can be broadly divided into various classes. For example, proteins harboring PH domains generally prefer to localize to the plasma membrane which is constitutively abundant in PtdIns(4,5)P₂, or the transiently produced plasma membrane $PtdIns(3,4,5)P_3$, owing to the presence of positively charged amino acids such as Lys and Arg in their binding sites (Moravcevic et al. 2012). Previously, most of the lipid research was restricted to the study of membrane PtdIns(4,5)P₂ and its subsequent hydrolysis by phospholipase C (PLC) thereby yielding diacyl glycerol (DAG) and InsP₃ (the latter responsible for release of calcium from intracellular stores) (Mitchell et al. 1981), but after the discovery of PI 3-kinases by Whitman et al. (1985), the phosphoinositide community started focusing its attention on the lipid products downstream of PI3 K activation (Dove et al. 1997).

Protein interactions with membrane phosphoinositides

Several classes of phosphoinositide-binding proteins have been discovered and functionally characterized. Examples include the PtdIns3P binding FYVE (Hayakawa et al. 2006) and PX domains, the PtdIns(4,5)P₂ binding ENTH domain, the PtdIns4P binding FAPP1 PH domain, the PtdIns5P binding ING2 zinc finger and the more promiscuous

N. A. Gokhale (⊠)

Inositol Signaling Group, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Building 101/Room No. F-247, Research Triangle Park, NC 27709, USA e-mail: Nikhil.Gokhale@umassmed.edu

Annexin A2t (Moravcevic et al. 2012; Gokhale et al. 2005). More recently, a PtdIns(4,5)P₂ depletion technique was pioneered by Liou et al. (2007) to study the effects of PtdIns(4,5)P₂ dephosphorylation (i.e., PtdIns(4,5)P₂ depletion) on the intracellular localization of plasma membrane binding proteins in living cells. Shears (2007) took a step further and started investigating into the role of soluble inositol phosphates and pyrophosphates (InsP₄ to InsP₈), downstream of the PLC-mediated InsP₃ synthesis, in regulating intracellular energy homeostasis and ion channel function (Vajanaphanich et al. 1994). Briefly, phosphoinositides that interact with various classes of signaling proteins can be divided into eight different sub-types as discussed below.

PtdIns(4,5)P₂

Membrane PtdIns(4,5)P₂ has been implicated in a host of physiological roles ranging from endocytosis to hearing (Rodriguez et al. 2012; Abe et al. 2008). Rodriguez et al. (2012) demonstrated with knockout experiments that phosphatidylinositol phosphate kinase type 1γ (PIPKI γ) is primarily responsible for the synthesis of the receptorregulated PLC-sensitive PtdIns(4,5)P₂ pool in the cell syncytia that supports auditory hair cells in adult mice, whereas Abe et al. (2008) used $PtdIns(4,5)P_2$ depletion to further investigate into the involvement of this phosphoinositide in the endocytotic machinery. PtdIns(4,5)P₂ is constitutively abundant at the plasma membrane surface; however, some recent studies (Yildirim et al. 2013; Blind et al. 2012) have also started investigating into the role of nuclear PtdIns(4,5)P2. Although the presence of nuclear pools of PtdIns(4,5)P₂ was reported earlier (Divecha et al. 1991), significant progress in that direction was made only recently. For example, Yildirim et al. (2013) recently reported the involvement of nuclear PtdIns(4,5)P₂ in RNA polymerase I transcription. Blind et al. (2012) showed that inositol polyphosphate multikinase, which functions as an inositol kinase and as a phosphoinositide 3-kinase, interacts with the nuclear receptor steroidogenic factor 1 (SF-1) and phosphorylates the bound $PtdIns(4,5)P_2$.

PtdIns(3,4)P₂ and PtdIns(3,5)P₂

Phosphatidylinositol-3,4-bisphosphate (PI(3,4)P₂) is produced in vivo by the PI3 K mediated phosphorylation of phosphatidylinositol-4-phosphate PI4P, by the hydrolysis of PI(3,4,5)P₃ or by the phosphorylation of PI3P (Auger et al. 1989). In a recent report, Sasaki et al. (2010) highlighted the importance of PtdIns(3,4)P₂ metabolism and showed that inositol polyphosphate phosphatase 4A

(INPP4A), a PtdIns(3,4)P₂ phosphatase, acts as a suppressor of glutamate excitotoxicity in the central nervous system. The PtdIns(3,4)P₂-binding protein TAPP1 has been shown to interact with the scaffold proteins syntrophins, thereby regulating actin cytoskeletal organization (Hogan et al. 2004). Interestingly, the phosphoinositide PtdIns(3,5)P₂ has by far been the least understood of all the three "PIP₂" phospholipids. However, recent studies clearly indicate its participation in a host of processes including endolysosomal regulation, trafficking, acidification and autophagy (Ho et al. 2012). Abnormalities in PtdIns(3,5)P₂ regulation have been linked with Charcot–Marie–Tooth disease and amyotrophic lateral sclerosis (Ho et al. 2012; Chow et al. 2007).

PtdIns(3,4,5)P₃, monophosphorylated phosphoinositides and PtdIns

PtdIns(3,4,5)P₃, a lipid product of PI3 K activity, gets dephosphorylated by the phosphatase PTEN on the 3' position of its inositol head group, thereby generating PI(4,5)P₂ and by SHIPs (SH2-containing inositol phosphatase) on the 5' position, resulting into the formation of PI(3,4)P₂ (Auger et al. 1989; Damen et al. 1996; Stocker et al. 2002). This important phosphoinositide has been implicated in various different physiological roles such as AMPA receptor clustering (Arendt et al. 2010) and actin polymerization (Chen et al. 2012). It also functions as a membrane anchor by recruiting a large number of signaling proteins with polybasic clusters to the plasma membrane (Heo et al. 2006). Although studied to a lesser extent than PIP₃ and the PIP₂s, monophosphorylated phosphoinositides also play an important role in membrane recruitment. The FYVE domain has been previously shown to have a high affinity for membrane PI3P (Stenmark et al. 2002). The protein SARA (which harbors a FYVE domain), through its direct interaction with PI3P, rhodopsin and the SNARE protein syntaxin 3, mediates the fusion of rhodospsin-laden vesicles with nascent discs in the vertebrate rod photoreceptor (Chuang et al. 2007). Similar to what Heo et al. (2006) demonstrated a few years ago, Hammond et al. (2012) recently showed that plasma membrane PI4P contributed not only to the synthesis of PtdIns(4,5)P₂, but also to the recruitment of signaling complexes at the plasma membrane. Unlike PI3P and PI4P, there is no evidence that PI5P can be synthesized inside the cells by the phosphorylation of PI and a recent report actually suggests that PI5P is produced by the MTMR3 and inositol 4-phosphatasemediated dephosphorylation of PI(3,5)P₂ and PI(4,5)P₂, respectively (Devereaux and Di Paolo 2013). PI5P has been shown to regulate cell migration in a recent report by Oppelt et al. (2013).

Conclusions

Membrane surfaces are predominantly comprised of phospholipids and between 1-3 % phosphoinositides. For example, early endosomes primarily involved in cargo transport are abundant in PtdIns3P, whereas the acidic late endosomes are enriched in PtdIns(3,5)P₂ (Moravcevic et al. 2012). The differential binding affinities of peripheral proteins towards these membrane phosphoinositides causes selective recruitment of various classes of proteins to the membrane surfaces and these proteins then interact with each other to form membrane scaffolds or protein complexes. These protein complexes then regulate events downstream of membrane binding (Cho 2006). For example, AKT (also referred to as PKB) gets recruited to the plasma membrane owing to its high binding affinity towards plasma membrane PtdIns(3,4,5)P3 and subsequently gets activated by mTORC2-mediated phosphorylation. Once activated, the kinase domain of AKT regulates a large number of downstream processes that are currently being studied by several research groups around the world and the PI3 K/AKT pathway serves as an effective target for designing drugs against inflammation and cancer (Sarbassov et al. 2005). Surprisingly, there are a large number of studies that investigate into the role of lipid binding and membrane recruitment without giving due consideration to the differential binding selectivities of proteins for all of the eight naturally occurring phosphoinositides. In view of the recent reports (Heo et al. 2006; Hammond et al. 2012) highlighting the importance of PtdIns(4,5)P₂ and PI4P binding that has been observed in the case of proteins that were previously thought to bind specifically to PtdIns(3,4,5)P₃ and PtdIns(4,5)P₂ respectively, a careful re-examination of the existing literature to rule out any promiscuous lipid binding behavior seems essential.

As the area continues to proliferate rapidly, a systematic study of protein–membrane interactions and the related lipid binding selectivities/specificities seems to be yielding valuable information that is currently being used to delineate the mechanisms of various physiological processes and a host of diseases (Sudhahar et al. 2008).

Conflict of interest The author declares that he has no conflict of interest.

References

- Abe N, Inoue T, Galvez T, Klein L, Meyer T (2008) Dissecting the role of PtdIns(4,5)P2 in endocytosis and recycling of the transferrin receptor. J Cell Sci 121:1488–1494
- Arendt KL, Royo M, Fernández-Monreal M, Knafo S, Petrok CN, Martens JR, Esteban JA (2010) PIP3 controls synaptic function

- by maintaining AMPA receptor clustering at the postsynaptic membrane. Nat Neurosci 13:36-44
- Auger KR, Serunian LA, Soltoff SP, Libby P, Cantley LC (1989) PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell 57:167–175
- Blind RD, Suzawa M, Ingraham HA (2012) Direct modification and activation of a nuclear receptor-PIP₂ complex by the inositol lipid kinase IPMK. Sci Signal 5:ra44
- Chen CL, Wang Y, Sesaki H, Iijima M (2012) Myosin I links PIP3 signaling to remodeling of the actin cytoskeleton in chemotaxis. Sci Signal 5:ra10
- Cho W (2006) Building signaling complexes at the membrane. Sci STKE 321:pe7
- Cho W, Stahelin RV (2005) Membrane–protein interactions in cell signaling and membrane trafficking. Annu Rev Biophys Biomol Struct 34:119–151
- Chow CY, Zhang Y, Dowling JJ, Jin N, Adamska M, Shiga K, Szigeti K, Shy ME, Li J, Zhang X, Lupski JR, Weisman LS, Meisler MH (2007) Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448:68–72
- Chuang JZ, Zhao Y, Sung CH (2007) SARA-regulated vesicular targeting underlies formation of the light-sensing organelle in mammalian rods. Cell 130:535–547
- Damen JE, Liu L, Rosten P, Humphries RK, Jefferson AB, Majerus PW, Krystal G (1996) The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-triphosphate 5-phosphatase. Proc Natl Acad Sci USA 93:1689–1693
- Devereaux K, Di Paolo G (2013) PI5P migrates out of the PIP shadow. EMBO Rep 14:214–215
- Divecha N, Banfic H, Irvine RF (1991) The polyphosphoinositide cycle exists in the 523 nuclei of Swiss 3T3 cells under the control of a receptor (for IGF-I) in the plasma membrane, and 524 stimulation of the cycle increases nuclear diacylglycerol and apparently induces translocation of 525 protein kinase C to the nucleus. EMBO J 10:3207–3214
- Dove SK, Cooke FT, Douglas MR, Sayers LG, Parker PJ, Michell RH (1997) Osmotic stress activates phosphatidylinositol-3,5-bis-phosphate synthesis. Nature 390:187–192
- Gokhale NA, Abraham A, Digman MA, Gratton E, Cho W (2005) Phosphoinositide specificity of and mechanism of lipid domain formation by annexin A2-p11 heterotetramer. J Biol Chem 280:42831-42840
- Hammond GR, Fischer MJ, Anderson KE, Holdich J, Koteci A, Balla T, Irvine RF (2012) PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science 337:727-730
- Hayakawa A, Leonard D, Murphy S, Hayes S, Soto M, Fogarty K, Standley C, Bellve K, Lambright D, Mello C, Corvera S (2006) The WD40 and FYVE domain containing protein 2 defines a class of early endosomes necessary for endocytosis. Proc Natl Acad Sci 103:11928–11933
- Heo WD, Inoue T, Park WS, Kim ML, Park BO, Wandless TJ, Meyer T (2006) PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314:1458–1461
- Ho CY, Alghamdi TA, Botelho RJ (2012) Phosphatidylinositol-3,5-bisphosphate: no longer the poor PIP2. Traffic 13:1–8
- Hogan A, Yakubchyk Y, Chabot J, Obagi C, Daher E, Maekawa K, Gee SH (2004) The phosphoinositol 3,4-bisphosphate-binding protein TAPP1 interacts with syntrophins and regulates actin cytoskeletal organization. J Biol Chem 279:53717–53724
- Liou J, Fivaz M, Inoue T, Meyer T (2007) Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci 104:9301–9306

754 N. A. Gokhale

Mitchell RH, Kirk CJ, Jones LM, Downes CP, Creba JA (1981) The stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells: defined characteristics and unanswered questions. Phil Trans R Soc B 296:123–137

- Moravcevic K, Oxley CL, Lemmon MA (2012) Conditional peripheral membrane proteins: facing up to limited specificity. Structure 20:15–27
- Oppelt A, Lobert VH, Haglund K, Mackey AM, Rameh LE, Liestøl K, Schink KO, Pedersen NM, Wenzel EM, Haugsten EM, Brech A, Rusten TE, Stenmark H, Wesche J (2013) Production of phosphatidylinositol 5-phosphate via PIKfyve and MTMR3 regulates cell migration. EMBO Rep 14:57–64
- Rodriguez L, Simeonato E, Scimemi P, Anselmi F, Calì B, Crispino G, Ciubotaru CD, Bortolozzi M, Ramirez FG, Majumder P, Arslan E, De Camilli P, Pozzan T, Mammano F (2012) Reduced phosphatidylinositol 4,5-bisphosphate synthesis impairs inner ear Ca2+ signaling and high-frequency hearing acquisition. Proc Natl Acad Sci USA 109:14013–14018
- Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806
- Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101
- Sasaki J, Kofuji S, Itoh R, Momiyama T, Takayama K, Murakami H, Chida S, Tsuya Y, Takasuga S, Eguchi S, Asanuma K, Horie Y, Miura K, Davies EM, Mitchell C, Yamazaki M, Hirai H, Takenawa T, Suzuki A, Sasaki T (2010) The PtdIns(3,4)P(2)

- phosphatase INPP4A is a suppressor of excitotoxic neuronal death. Nature 465:497–501
- Shears SB (2007) Understanding the biological significance of diphosphoinositol polyphosphates ('inositol pyrophosphates'). Biochem Soc Symp 74:211–221
- Stenmark H, Aasland R, Driscoll PC (2002) The phosphatidylinositol 3-phosphate-binding FYVE finger. FEBS Lett 513:77–84
- Stocker H, Andjelkovic M, Oldham S, Laffargue M, Wymann MP, Hemmings BA, Hafen E (2002) Living with lethal PIP3 levels: viability of flies lacking PTEN restored by a PH domain mutation in Akt/PKB. Science 295:2088–2091
- Sudhahar CG, Haney RM, Xue Y, Stahelin RV (2008) Cellular membranes and lipid-binding domains as attractive targets for drug development. Curr Drug Targets 9:603–613
- Vajanaphanich M, Schultz C, Rudolf MT, Wasserman M, Enyedi P, Craxton A, Shears SB, Tsien RY, Barrett KE, Traynor-Kaplan A (1994) Long-term uncoupling of chloride secretion from intracellular calcium levels by Ins(3,4,5,6)P4. Nature 371:711–714
- Varnai P, Balla T (2008) Live cell imaging of phosphoinositides with expressed inositide binding protein domains. Methods 46:167– 176
- Whitman M, Kaplan DR, Schaffhausen B, Cantley L, Roberts TM (1985) Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 315:239–242
- Yildirim S, Castano E, Sobol M, Philimonenko VV, Dzijak R, Venit T, Hozák P (2013) Involvement of PIP2 in RNA polymerase I transcription. J Cell Sci (EPub ahead of print)

